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ABSTRACT

In the complex energy plane, the pure Couvlomb T matrix possesses
branch points which would not appear if the force were properly de-
fined. This is demonstrated by a study of the screened Coulomb T
matrix in the limit as the screening radius R +tends to infinity.
No branch points develop if the proper order of limiting processes
is observed and the results agree with previous calculations; however,
the T matrix is discontinuous in the limit. A formula for the screened
Coulomb T matrix is given which is valid to order 1/R for all energies.

I. INTRODUCTION /_~4\

The T matrix for a system undergoing scattering is given by

' 1
T=V+ VEHE_K_V V. (1)

Here K 1is the Hamiltonian for the system in the a@bsence of interaction, and
V is the interaction giving rise to the scattering. The total energy of the
sysbem is denoted by E; the small imaginary term i@ serves to make the

Green's function

E+ie-X-V




well defined.
We shall consider the T matrix in the momentum representation, with ma-
trix elements denoted by SEZlTlEl). It is convenient to introduce a complex

wave number k, which is related to the total energy by

2,2 .
E+1€=‘E\2r':‘9 0<an,g(k)<‘lT,

thus the energy dependence of the T matrix may be indicated explicitly by
shng(k)LEl), or simply T(k).

For most quantum mechanical systems, the T matrix cannot be given in
closed form. However, the case of a two-particle system with pure Coulomb in-
teraction has been studied extensively, and recently Hostler and otherst derived
integral representations for the Coulomb Green's function which reduce to hyper-
geometric functions. From these the Cowlomb T matrix can be obtained directly.

The resulting expression for T(k), however, has the drawback that it does
not approach a well-defined limit as k2 - ki or k2 d kg, and indeed has
branch points there. This behavior is certainly not correct, for one can show
on very general grounds that the only singularities of T(k) should be a branch
point at k = O and simple poles on the imaginary k-axis corresponding to the
bound state energies of K + V.

The correct form of the T matrix when kz = k% is given in Ref. Z, where a
similar anomaly in the limiting process L&zlﬁjka] was studied. The difficulty
there was traced back to the long-range nature of the Coulomb force and disap-
peared when the effects of shielding were introduced.

In the present case the unphysical branch points are alsc due to neglect

of shielding effects. The scattering of charged particles is caused by an in-




teraction which is always screened at very large distances; the T matrix may
therefore properly be regarded as depending on Ezg parameters, € and the
screening radius R. To find the value of T(k,R) for real k, one must take
€ + 0 followed by R = ». Usually, the ordering is unimportant, but the
branch points at ki and kg occur in Hostler's expression because the limit
R = o has been (implicitly) taken first.

The present work is intended to clarify the situation by studying the
behavior of the screened Coulomb T matrix in the limit R > . In Sec. IT
the formalism is established and applied to the cutoff Coulomb potential. This
interaction is chosen because it allows one to determine unambiguously the ef-
fects caused by extending the pobtential past the cutoff radius. In Sec. IIT
these effects are isolated, and a general expression for the screened Coulomb T
matrix is derived, which is valid to order l/R for all k.

In Sec. IV the limits €+ 0 and R >« are taken. We find that branch

points at ki and kg do not appear if the proper order of limits is used; fur-

thermore, the resulting T matrix agrees with that obtained in Ref. 2. For other
values of k, the screened and pure Coulomb T matrices are identical in the
limit R = ». Hence, the order of limiting processes is unimportant except in
the vicinity of k% = k¥ and k% = k§ or when | = (k] (The last case
requires special treatment and will not be considered here; in the following
sections it is assumed that [ﬁ;l % |&?|.) The branch points in the pure
Coulomb T matrix are due to that part of the potential beyond the screening
radius R; Sec. V treats the effects of this part of the potential on the plane

wave part of the pure Coulomb wave function.




II. SCREENED COULOMB T MATRIX
We begin by making an expansion in Legendre polynomials of the T metrix

for an arbitrary central potential V(r):

R (k- k) <Ral Ty 1R, (3)

L) TR
The coefficients <k2‘T7.[kl) are given by>

CalTylld = TR I TIRDRW A (uokrk) (o

and may be obtained by using Eq. (1) if the Green's function is known. This is
accomplished by making an expansion of the coordinate representation of the

Green's function:

[] A A
)6l = ; ol NN ORI IAIDN (5)
]
After the angular integrations are carried out, we have
elTylk)y = By + My, (6)
where
B = | 4o ker) Win Jy (k1) r2 dr -
0
and
" ={r dr | v2de §, (RO W) <16 1> W) dy (k1) (&)
0]

with W(r) = (2m/H%)V(r).
To obtain the partial wave Green's function (r!GZ]r‘), we write the oper-

ator equation (E + ie¢ - K - V)G = 1 in the coordinate representation, which



leads to

[LLe o k- ) - yerig ey = Besrd, )

Ydr?
The solution to this equation is easily shown to be

A o !
&Gl = s i) Hy (%), (10)

where Te is the smaller and ry, the larger of r,r', and where FZ and HZ

are the regular and irregular solutions of

[-£ + K- 20— ] 4,00 - 0 (1)

dr?

having the asymptotic forms
R ~ e [Rr-5mU+1) + &1,

H. () ~ ei[hr ~sml+) + &) (12)
2

With this normalization the Wronskian of FZ and HZ is equal to ik.

We now apply these formulas to the cutoff Coulomb potential

N, /r re<k

V() = { (13)
0 r>R

The solutions of Eq. (11) must in this case be proportional to pure Coulomb

functions for r <R, and to free-particle functions for r > R. The Coulomb

functions are normalized so that their Wronskian is equal to ik, and the free

particle functions are so chosen that the asymptotic forms of Eq. (12) are ob-




tained for large r:

Ny B0 r<R
R ={%kr [ eial h:)tkr) + e_aa, h;t)(kr)] r>R -
Ny' Hy (k) r< R |
() ={ kr e.L ! h;)(kr) r>R. £15)

Here h§;) and hgz) are spherical Hankel functions; the pure Coulomb func-

B

tions F; end H; may be written*

fic(r) = %‘C! () (;zla\f)!‘H e(kr P (e+1+in, 2+2; -2ikr), (16)

.

LN +ig 0 b )
e 1+ (-:zkr)“e( rE(Hqu,QHQ;-a.Lkr), (17)

H;(r) =
where

-3 -9 Ta+1+n)

(n) = e (18)

. TM@e+2)

?G _ Tl+i+in (19)
Me+1-in)

and 7 = mVo/hzk. The quantities Nz and & are determined by equating log-

1
arithmic derivatives of Fl at r = R, but to first order in 1/R this is

equivalent to matching amplitudes and phases; accordingly,

Ny~ 1, & k) ~ g - nin(akR). (20)



For Zrevity we introduce the functions

. , e
Bp(r,X) = A (K) WD B, (21)

avw f )
Y, '\r? ‘<)

1]
Y
o\,

2 )

() WIr) Hy (1), . (22)

s0 thet MZ nzy be written

' ( ! ! C PV ' '
Mg:,_'}gguﬂ (r,;z)'\%(r’,ko el +-5 ?vi(z',kz) uf(‘.,{:af)al’dr. - (23)
A S o

Now, ™y reversing the order of integrciion In the second term, we can show

that

~7
Vo (L Yo /b 2N o owm -t
t .;\ = mg \t\z,k,/’ : 5‘9\\‘\:’ oy, ‘,Q t m/(& ) \24)
where
2 -
pon -
¥ 1 H y ' ] ! !
; e — — gt e A It b N S Ay
‘.’Y’i(?27 ; 1} i A 19 i /‘v‘j N -2) 'u',.‘ \!r’ N~y ) C\r G\l . (25)
;I»yb -
In principle, therefore, evalvation of iz ouvioff Covlors T matrix has been re-

duced to evaluaiion of mz(kn.?-) eni the Inteogrel

s TILOULRE LITETEL
o)
~
= — "\r\‘?t\ ";? - : /‘ﬁy\ rr'r
—yp = Ty 2, AR /’/‘z@ NI RV Wie (.26)
~ - i [P [0
O

ot

(A detailed study of the
in NASA TX D-2781.)

IIT. T MATRIX FOR LARGE

3

£

The difficulty with the foregoing analysls is that 1t leads to expressions

=

50 complicated that the summation over 1 cannot be carried out in closed form.



Since in practice the screening radius is always very large, one is tempted to
take the limit R =« in the hope that the resulting series can be summed.

This approach is successful, but care must be taken when kz - k]2_ or k& - k&

2
because the limiting process is nonuniform.
We begin by rewriting m, in the form
= o0 R )
tkm, = Su (r)g v () dr/dr - (S uﬂr)olr)(j Y (1) dr)
1 2 2
0 Y ° R
00 00 (27)
—Sul(r)S Ui“') dr’ dr,
R r

which is possible if v and v, are given some suitable definition for
r > R. For the present purpose it is convenient to require that u and vy

have the same functional form for r >R as for r <R; i.e., u; and v, are

proportional to pure Coulomb functions times spherical Bessel functions for all
r. With this definition, the first term in Eq. (27) is just what one would

write for the pure Coulomb® T matrix, and to emphasize this we write
l L)
my(R) = m () = == TJ(R)V, (R) + 0(%) (28)

R
U, (R) = S ay (v) dr (29)

0

and



=9

V(R = | ymdr.

R

(30)

The third term in Eq. (27) has been dropped because, as shown in Appendix A,

it is AA1/R) for all cases considered here .5

Generelly speaking, the second term in Eq. (27) may also be neglected.

see this, consider the asymptotic forms of u; and vy,

ank Aim (Ryr - L)

My (¥) ~ T [hr-—w1+ - qﬂm(&k‘”)]

_ivg) el(kr—%m( + ;)
Ryr  (aknt

v (0 ~ - aink AriRY

From Eq. (32) it follows, on integration by parts, that

'Lk_R \

W (R) = (;zlelz)"L 0 [ (k*- k) RJ '

From Eq. (31) one can show that
eikR

mm [YUQ(Y)]

To

(31)

(32)

(33)

is a bounded function of r for r <R, R = o; consequently, the quantity

eikRUZ(R)/(ZkR)i’l has no worse than a logarithmic singularity as R - «,

and therefore
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U R ) = &[] =

Equation (28) shows that m;(R) is given by its unscreened value m; ()
except when contributions to the latter from large r are important, and
these occur only when k& - kf Similar conclusions may be drawn for f;(R),
the critical condition becoming k2 - kg. Since B,(R) = B,(=) + A 1/R), we

may write

o) Tk, RYIRY = LRy | Ty (k, ) Ry> + O(k)

(35)
N [(k’ k2R ] g[ﬂ"——'@%’]’
or, after the sumation over 1 has been performed,
(Rl TR R)RD = (k| Tlhw) k) + OG) "

+ 0 [“—“’_uez- Lfm} N ﬂ(k%‘jkz‘m}'

Now let us attempt to obtain a result more general than Eq. (36). This

requires that we extract from the neglected terms and retain those parts which

2 _ kf)R - 0 or (kz - kg)R - 0. For this purpose the

are important when (k
quantity U;V; must be examined in greater detail.

We shall begin with Vy, which is given asymptotically by

Lky

o [ -'k,r g LRy dr
Vi (R) ~ QT; =" | e [ "™ ] 5 (57)
R
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A change to t = r/R as the variable of integration yields

L8, (R) *
0 g0« 100 m).

where

Tt

(x) = t_"m eix
500 = i §
: (% . . . l
= ine P (1= -tx), 1a/l'3(—t%)|<‘i'"'-

(38)

(39)

The asymptotic form of f£(x) is easily found to be -nelx/x, while for

values of x sapproaching zero, the relation
LW . ) . . . .\ :
LrleL B-tn;-in) = Bl-in, 1-in ;) - ) T (1-in)
yields
. \in ,
f(x) 30 -G T'U-in).

When applied to f[(k - kl) R], Eq. (4l1) gives

5leR)R] = 1 - e P [t OR]™ + Olk-k)R]

-18,(k) / p2_ 2\
- \—com)e””(k.—k

)+ k- kIR],

where

—- AT < Qh.?,(k?—kz) < 0.

(40)

(42)

(43)
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The corresponding result for f[(k ’-ljkl)R] is exactly the same, except that the
neglected terms are, of course, d[(k + kl)R]. Combining these results, we

have for the behavior of f[(k + kl)R] as R > w

(kR ,

@kR)™ 0|5 k.‘)ej (4¢0)
§ltex k)R] = L8 R )

epete® _)%_k_f_) + ¢ [(K=kMR]. (esb)

Before proceeding, let us note that to O(1/R) the product U;V; can be

written in the form

Asltk-k)R] + Bsllk+ k)R] + ¢(%),

where A and B are yet to be determined. We shall, in fact, be able to give
exact expressions for A and 3B, valid for all k. However, since f[(k - kl)R]
is already O'(l/R) except when k = k;, an exact expression for A is really
necessary only in the vieinity of k = kl' Similarly, an exact expression for
B is really necessary only in the vicinity of k = -k;. For this reason

we shall immediately put k/kl = + 1 in Eq. (38) and write

I\

P 1 aa
V(R) = -le R{-S-[(k-h,)R]+ (\')iﬁ-[(k‘* 'QJR:U + 6’(7?’)' (45)

Next we demonstrate that
)
2
N, e
R

Cey 1Ty (R, R R = %(R), (46)
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i.e., U, 1is proportional to (kleZ(k,R”kl) for the special case where
kl is complex and equal to k. The proof begins with the observation that

Egs. (6) to (8) may also be written as follows:
Ty RIEY = § 4 () WO 0 = dir, (a)
(s

where

oQ

l,bﬂ(v) = &Uer) + S(r\@z()e)lr') W(r) él(kr’) r'*dr’ (48)
(2]

and k; has been set equal to k.

Equation (48) is almost identical to one of the well-known integral
equations for the radial wave function Fz(r); it differs in that the wave
numbers in jy(kr) and G;(k) are exactly equal instead of equal in the limit
€ > 0. This circumstance makes the integrand in Eg. (48) a perfect derivative,
however, and, as shown in Appendix B, the result is what one might naively ex-

pect:

LS
lli(r) - e RO (49)

Equations (47} and (49) then lead directly to the desired expression for
Uy (R).
As mentioned above, in order to determine U7VZ to 0’(1/R), the coeffi-

cient of f[(k - kl)R} must be known exactly only when k = ky; therefore,
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is.q(p)jc[(h-h.m] $[(k-k) R][ UU?)] + 9(x)

k=k,
- f[(h'k'm] (ke Ty, R R+ Ol

(50)

In like manner we may write

)
£ 2 G0 $ltks k)R] = ks k)RICE T, CR, Rk + OfR)

[ (51)
= 0 1kt kORI R | Ty (R ROLRY o).
(The fact that Jj,(-x) = (-l)ljz(x) is used to obtain the final form of
Eq. (51.) Fromw Egs. (45), (50), and (51) it follows that
m(R) = m ) + §(k-k)R] Che Ty (ks R RS
(52)

+ 5 [(Re k)R] (o, | Tk, RIRD + O (%)

Tre expression for %Z(R} is similar, bubt with ky and k2 interchanged.

Using the symmetry property

Lo )T, (R k) = Lhy | Ty (R R (53)
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and its consequence
<E,\T(h)| ) = <Bz ‘ T(k)’B,> (54)

which can be readily estsblished from Egs. (7) and (8), we may give a gen-
eral expression for the screened Coulomb T matrix, correct to @(1/R) and

valid for all k:
el TR, RIRY = Rl Tk, )| k>

+ §Lk-k)R] (k| TCR, R TR

+ 5 LRt RIRI (R | TRy, R R

(55)

+ 5[(k-ka)R] <ka| TRy, R)I Ry

+ 5L+ RIRICR | T(-R; R) R + ¢ (%)

IV. LIMITING CASES
To complete the study of the screened Coulomb T matrix, we shall need
ciosed-form expressions for the T matrices that appear on the right side of
Eq. (55). The first is th2 pure Coclond T matrix with complex k, which may

te obtained from Hostler's work and written as follows:

Ve 141
el TR ) kD = 22 T (56)
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where

() .
I(')C) - qu(l" e-?ﬂrl,)']S (S—l tn, I ds , (57)

S+ i %

oa

. K2 - k¥ (R2- B N
-1 s kl(k)z(- k.)f)’ (56)

The integral I(x) may be evaluated bty changing to

as the variable of integration, with the result

169 = %[ F(inwins 2) - B0 i win )] e

Considered as a function of k, I(x) has simple poles at
in= -n(n=1,2,3...) and brarch points at %% = 1 and x° = w. These latter
points correspond to k2 = ka_, k2 = kg, k2 = 0, and k2 = . The behavior of
I{x) as x -1 may be determined by analytic continuation of the hypergeomet-

ric series and is given by

—nn -
T (%) — Cﬁ(q) (—;—(—ﬁ!} -1, -am < an.ﬁ(,%—,') < 0. (60)
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Applying this specifically to the case k2 - kf, we can write

Vo, RN R kRN
<Sz‘T(h,w)|B.> = o Co () {(BZ_E')Z]HLQ 7;‘,5'?') ’ (61)
where
- < ah?(k:—kz)< T, (62a)
—arr < arg (k- k) <O. ~ (62b)

Next we consider +he screened Coulomb T matrices appearing in Eq. (55).

All these can be obtained in closed form from the basic result of Ref. 2,

WA 1S, (k) k- k° in l
GITRDIES] |, = g2 e '[(;:_.Eﬁﬁ% v 0. ()

Although Eq. (63) was originally derived with the assumption that k = k), it
also holds for k = -k, . To show this, we rote from Eq. (1) that T(E - ie) =

T(E + ie)*, if V and K are real. From this, in the limit e = 0O,

T(h—-»k,ewi) = [T(h—»kl)]*.

Eq. (63) satisfies this relation and therefore holds for kz = PE The sym-
metry property (54) may be used to obitain the result for k2 = kg.

We carn now see explicitly how the screened Coulomb T matrix behaves as
R—=>w. If k 1is complex, or is real but not equal to ik; or itkp, all the

f functions in Eq. (55) are Ol1/R), and therefore
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| b (kI TR Y = (ol Tl K

1 R—> o0
| Vi 1+ T
- S0 - 7
am,z (52 - V‘k:)z (64)

But when k approaches one of the critical values, say kl’ Eq. (55)
reduces to
Rl TCR,RITRD = Ry TUR, 00)] k>

(65)
+ $lk-EIRI | TUR, RIRY + O (F).

The T matrix is thus represented by a combination of two terms, one correct
for R = o, k;é Ky and the other correct for k = K, R < w; which term
dominates is determined by f[(k - kl)R]. If R-w faster than k = ky,

the first term dominates, and we are led again to Eq. (64). As discussed pre-

viously, however, the 1limit R = o is actually a convenience and should be

performed last, which corresponds to (k - kj)R = O. Compering Eq. (44b) to
the T matrices as given in Eqs. (61) and (63) reveals that in this situation

| a cancellation takes place and yields

| TR, RIRY = CRo) Tk, Rk + O [k-k)R] + & (%)

R W6 (RE-k2)M ) il
= 3 C(n) e W“T @ [(k- k)R] + G’(R) (662)
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In the general case, where (k - kl)R approaches some fixed value as

R = w, use of Eq. (40) leads to

Lol TR RS = oy [T(ky, R D B-in, 1-in; i (k-R)R] + O(R).(650)

Obviously, similar results are cbtained when k approaches any of the other
critical values.

We may summarize our findings as follows: Generally, it meskes no dif-
ference when the limit R =* o is teken in the expression for the screened
Coulomb T matrix; the result is identical to the pure Coulomb T matrix and
does not depend on R. The exception to this generalization occurs when
k2 approaches k% or “ig. In this case the screened Coulomb T matrix
admits of an asymptotic expansion, the leading term of which is a well-
behaved function of k and depends on R +through the logaritimic phase fac-
tor eiso. In contrast, the pure Coulcmb T matrix has branch points at
k¢ and k&, in addition to being independent of R.

Near these critical points, the difference between the pure and screened
Coulomb T matrices is due to_contributions to the latter from r' > R. These
contributions do not affect the angular dependence of the T matrix, but only
its magnitude and phase. The effect on the magnitude is such as to make the

T matrix discontinuous in the limit R - «. This effect is strikingly dis-

played when k 1is on the real axis; near k;, for instance, we have

) v, |
R'Q—U::'o I<BZ'T(k)R))EI>‘ = Qe (kz'k,)z U)n, ﬂ}h'z ) (67)
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Wwhere

c,(n) k, >k

%L: 1 . k,‘:k

1

Co(rl) kz > ka

w9y

%z =
el k< k. (68)

e Cn)  k<k
V. WAVE FUNCTIONS
A remarkable finding of the preceding section is that when k@ approaches
kaj or kg ;» the entire contribution to the pure Coulomb T matrix comes from
large values of r'. More precisely, the contribution from r' > R consists
of two parts identical except in normalization, one of which exactly cancels
the contribution from r' < R. When screening is introduced, the cancel-
lation is prevented. It is perhaps worth noting that this same phenomenon
is responsible for the well-known distortion of the incident plane wave in a
pure Coulomb field.
To see this, consider the wave operator Q(k), which is related to the

Green's function by the equation

Q) = 1 + G(k)V. (69)
Suppose that £(k) operates on a plane wave of momentum ¥k, with --,i L‘l;l! .

A partial wave expansion yields

3 2 A A
Q (k) tﬁg’ = (am * ,Q;o E’Q(Q,QH) R(rk) Ry ™, (70)

where
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Rﬂ(r) = él(h.f) + S <Yl Gﬂ(k)lr/> W(Y') a.x (klr,) r'* d‘,/‘ (71)
4]

(The radial function Rl(r) is generally different from Wl(r) of Sec. IV,
because the wave numbers in jZ(klr) and Gz(k) are different.) By making
use of quantities defined in previous sections, we may develop the following

exact expression for Rz(r):

Ryl = 2iﬂ(lz,vr) + %{ Ne H (D Gy (e, k) + N; T (r)[v"c () -V (R)]} ,  (72)

where ro is the smeller of r and R. (We have written U;(r_,k) to
indicate explicitly that ki is involved, not k2 as before.)

Now let us determine the asymptotic form of R;(r). Since K2 # k%,
we have V,(r) = elk¥@(1/r) as before. Thus, if we suppose r. to be large

enough that N; ~ 1,

Ry (0) ~ 4, (k) + L—L—V[Hﬁl(r)qm k) o+ G'(—"Q-)]

ckr 0
~ éiugr) - 9(_. U <RIy (k) kD + 0(—,‘;(—2). (73)
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This equation may be inserted into Eq. (70) and the summation over 1 per-
formed, which yields
31 ik-r eik'
Q(k) ¢k, ~ kafﬂ') [e ~T - e <5\T1 (k, r()'fl>] ) (74)
~y

= " . s "o
where X = 1?"/1' The "scattering amplitude <}§IT(k’r<)L1§l) depends only

-inln(2kr<) ; the plane

weakly on Yoo through a logarithmic phase factor e
wave elk1°L ' is unaffected.

Although Eq. (74) has been derived assuming a cutoff Coulomb potential
for W(r), this restriction is not necessary. We can return to Eq. (72),
set R = », and proceed as before; now the only reference to a cutoff poten-
tial is to identify Ul(r’kl) as proportional to (lel(k’r)‘kl>' Thus we
conclude that even in a pure Coulomb field, the incident plane wave is un-
distorted if k% # k2.

2 » ¥, the result depends critically on when the limit

However, if k
R = o is taken. Equation (74) is still valid when k% = k€ provided that
r >R, i.e., the limit R = = is taken last. Here the factor Vz(r<) - VZ(R)
in Eq. (72) prevents any cancellation due to contributions from r! > R. But
if the limit R > is taken first, the term Fy(r)V,(r) survives and becomes
important as k2 - k%. Now cancellation does take place, and after some
rearrangement we find that

2,1

n g §¢
2 (v 4
) 52+ o) (7s)

K- k
Rl(r) ~ Co(rl)( 4k‘z
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or
k,z- kz ”l c
awd, ~ () 4y @ (7o

where \lr‘%l(a) is the pure Coulomb wave function.’ As is well known, W}f‘,l is
given asymptotically by a scattered wave plus a distorted plane wave. We
also note from Eq. (76) that Q(k)q)}il does not have unit amplitude for
large r, a fact first pointed out by Mapleton.8 Both these features

which appear as k2 - k]2_ » the plane wave distortion and the amplitude renor-

malization, are due to (unphysical) contributions from r' > R.
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APPENDIX A - ORDER OF MAGNITUDE OF f u,;V, dr
R

In the text, the third term in Eq. (27), which may be written

(-]

S My ()N (v) d, (A1)
R

was neglected on the premise that it is always a(l/R) for cases of inter-

est. To prove this, we first observe that (using the asymptotic form of ul)

“the integral may be decomposed into four integrals of the type

- eixr _
S e V() d, (a2)
R

where A and Vv take on the values Vv(k * ko) and #1, respectively.
From Eq. (33) for Vy(r), we see immediately that ei?‘rVZ(r)/riVn = o1/r)

unless k2 I k?_; therefore

o0

SRU‘QV;Z dr = G’[—{?_-Lk—,z)—é] | (A3)

>3 ln)
To derive an expression valid when X° = k{, we integrate {A2) by parts and

obtain
ei)« r=eo % eikr l+ivn
’L'T{ rl+ivn \6(0 + g rl+ivn [ Y Y? () + Ui(\'):i dr} ’ (a4)
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since dVZ/dr = -v;. From Egs. (38) - (41) we can show that, for all values
of Kk, eﬂ‘er(r)/rin is bounded and ei)‘rvz(r)/rivn is @1/r) as r » w.

Consequently, (A4) is @O{1/AR), which leads to

Sw“M de = | Geme ) (15)

R

Egs. (A3) and (A5) indicate that the integral is negligible unless kf = kg,

which is excluded from the present discussion.
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APPENDIX B - EVALUATION OF Wl(kr)

In Eq. (48) we encounter the integrel

= S(rng(h)lr’) W(r') 4y Ckr) r'2dr,
¢

which may be written explicitly as
= ' [ S“ ’ ’ ' /
P= | W r H (W (r) G () dr

r
+ H, (r)S R () W(r’) ‘5‘3, (r’) dr’] ,

0

where %7 (r) = krj;(kr). Recalling that Fy(r) and Hy(r) ere both solu-

tions of

[d —U—JL) W(r)] $ (1) =

dl

and observing that ?Z.(r) satisfies a similar equation but with W(r) =0,

we can readily verify that

d d d % d
-Sii(X)W(\')oa'i(") = ;‘;(\oj} Eri N fk dY) T de W<03,'2) )ck)’

where W(‘Z;,fz) is the Wronskian of ?; and fZ‘ Therefore,

r'=r
]}
r’=o0

P

r/
A Rew(g, i)+ oW (F, F)
L =Y

and after some rearrangement,
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- HIW(S;,r—;)r,M}.

Since both F; and ZF; vanish as (kr)1+l when kr - O, the last term is
zero. The Wronskian of Fl and H, 1is equal to ik, and From Eq. (12) one

can establish that as kr -» «,

3, (k,7)
W(F, H) — ike £

For the cutoff Coulomb potential, the upper limit for the integral P should

actually be r' = R, and thus finally

ia’t(k, R) F, ()

kr

P= e

- ég(h")-

This equation leads immediately to the result given in Eq. (49).
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FOOTNOTES
1. L. Hostler, J. Math. Phys.'\iz, 591 (1964); J. Schwinger, i_dj_.g_.‘g, 1606
(1964); E. H. Wichmenn and C. H. Woo, ibid. 2, 178 (1961).
2. W. F. Ford, Phys. Rev. IJJEEB, 1616 (1964).
3. The expansion here differs by a minus sign from that used in Ref. 2.
4. Notation and formulas for the confluent hypergecmetric functions @
and ¥ are teken from Higher Transcendental Functions, Bateman Manu-

script Project (McGraw-Hill Book Co., Ine., New York 1953), Vol. I,
Chap. 6.

5. By "pure Coulamb" we shall mean a quantity obtained by assuming R =
at the outset, as opposed to taking the limit R =~ at the last.

6. For simplicity, the symbol &(1/x) is used loosely throughout to dencte
‘any term which vanishes when x - «.

7. Eq. (76) is actually an identity holding for all r, not an asymptotic
equality. This can be proved by using the integral representation (56)
in the relation Q@ =1 + (E + ie - K)'lT and taking the limit
k8 - % The result is proportional to an integral representation for

the pure Coulomb wave function.

8. K. A. Mapleton, J. Math. Phys. 3, 257 (1962).
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